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E-46100 Burjassot (Valencia), Spain

Received 26 December 2008, in final form 3 March 2009
Published 20 March 2009
Online at stacks.iop.org/JPhysCM/21/155802

Abstract
Four transport coefficients characterize the thermoelectric properties of materials. Three of
them are widely measured and studied. But the number of references on the Peltier coefficient
are very limited. This unequal result is a consequence of the Onsager reciprocal relation (ORR).
A review on the preciseness and accuracy of Peltier coefficient measurements has been
developed in this paper. Thus we can appreciate a low level in the experimental confirmation for
the ORR. In order to describe the thermoelectric processes in an advantageous way, the
observable formulation has been used. This is characterized by the electric potential measured
at the probe terminals and for the heat flux which the conductor laterally dissipates. The energy
balance provides the basic relationships among the observables and the Peltier and Thomson
coefficients. A new way for measuring the Peltier coefficient has been suggested.

1. Introduction

Four transport coefficients characterize the thermoelectric
properties of materials: the thermal conductivity κ , the
thermoelectric power or Seebeck coefficient S, the electric
conductivity σ and the Peltier coefficient π . The first three are
widely measured and studied: dozens of papers are published
every year. Nevertheless, for the last coefficient the number
of references is very limited: they do not average a paper a
year. In this unequal result the Onsager reciprocal relation
(ORR) π = T S has a decisive influence. In fact, the
easiness and accuracy of the techniques which measure the
Seebeck coefficient obviates the need for Peltier coefficient
measurements. But the ORR, which is founded in statistical
mechanics, needs to be experimentally checked in a few cases
at least. Therefore the experimental confirmation of this
relation depends on the preciseness and accuracy of Peltier
coefficient measurements [1–7]. A review of this subject has
been developed in this work.

In order to describe the thermoelectric processes in
an advantageous way, the observable formulation has been
used [8]. This is characterized by the electric potential
measured at the probe terminals and for the heat flux which
the conductor laterally dissipates. In this formulation both
the electrochemical potential of the electrons and the energy
flux play the central role. The energy balance provides the

basic relationships among the observables and the Peltier and
Thomson coefficients.

The interest in studying the Peltier coefficient is also
due to the fact this coefficient forms part of the expressions
which define both the Thomson coefficient τ and the figure
of merit Z T . The first combines the effect of two basic
coefficients τ = dπ/dT − S, while the second relates three
of them: Z T = σπ2/Tκ . When one applies the ORR,
we deduce the well-known expressions τ = T (dS/dT ) and
Z T = σ S2T /κ . The first provides the bases to evaluate
dS/dT from measurements of Thomson’s coefficient [9] and
the second is relevant to technological questions of great
importance, such as the construction of solid state energy
conversion devices. Materials with high thermoelectric figures
of merit are promising candidates for use in thermoelectric
power generation.

2. Theory

2.1. Transport equations

The evaluation of the transport coefficients is carried
out in filiform systems from the measurement of several
observables. In these wires all the flows and forces are
parallel to the x direction. The transport equations of the
thermoelectric phenomena are usually expressed in a local
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formulation [8, 10, 11]:

JU = κA
dT

dx
+

(
π − μ̃e

e

)
I (1)

d(μ̃e/e)

dx
= S

dT

dx
− 1

σ A
I (2)

where JU is the energy flux, A is the cross-sectional area,
μ̃e is the electrochemical potential of the electron, e > 0
is the magnitude of the electron charge and I is the electric
current. Here, the positive direction of the fluxes JU and I is
the opposite of the coordinate x (figure 1).

To evaluate the transport coefficients of a material we need
to know the local values of the following quantities: JU , T, μ̃e

and I . Some of them can be directly measured, i.e. T and I .
The other quantities need to be determined from the observable
electric potential �ψ = ψ II − ψ I measured between the
terminals of probes Z connected to sections I and II, and
the heat flux JQ which laterally departs from the conductor
towards the surroundings between sections I and II (figure 1).
These two observables are defined next.

2.2. Observable electric potential

The observable electric potential ψ measured at the terminals
of probes Z at a temperature To is closely related to the
distribution of the electrochemical potential μ̃e of the electrons
along the conductor. In an element dx the change in
temperature and in electrochemical potential of the electrons
is dT and dμ̃e, respectively. The quantity dμ̃e can be split in
two terms [8]:

dμ̃e = (dμ̃e)Z + (dμ̃e)volt. (3)

The first can be expressed through the Seebeck coefficient
of the probes, that is (dμ̃e)Z = eSZ dT , and the second is
measured by a voltmeter, that is (dμ̃e)volt = −e dψ [12, 13].
Then, we have

d (μ̃e/e) = SZ dT − dψ, (4)

and the second transport equation, equation (2), can be
transformed into

dψ

dx
= (SZ − SX)

dT

dx
+ 1

σ A
I. (5)

When the probes are of the same material as the conductor,
that is Z ≡ X, equation (5) simplifies to dψ = I dR, where
dR = dx/σ A is the electric resistance of the element dx of
conductor X. That is, when Z ≡ X the observable electric
potential difference measures the ohmic drop independently of
the actual temperature distribution in the conductor.

2.3. Energy balance

Under steady-state conditions, and for the wire geometry
considered here, the energy balance in the wire between two
cross sections I and II is presented as J II

U − J I
U = JQ , where

JQ is the heat flux that laterally departs between sections I and

Figure 1. Observables�ψ = ψ II − ψ I and JQ in conductor X. The
terminals of probes Z are at the same temperature To.

II from the wire to the surroundings (figure 1). From the result
J II

U − J I
U = JQ and equation (1) we obtain

�

(
κA

dT

dx

)
+ I�π − I�

(
μ̃e

e

)
= JQ, (6)

which can be used to evaluate the Peltier and Thomson
coefficients.

2.4. Single wire

When I = 0, from equation (5) we have

SZ − SX =
(
∂�ψ

∂T II

)
T I,I=0

. (7)

This expression is commonly used to evaluate SZ − SX. Note
that only differences can be determined but not their absolute
values. In these measurements four leads are attached to
the sample in order to provide the values of �ψ , T I and
T II [14, 15].

To evaluate the Thomson coefficient τ = dπ/dT − S we
consider two sections I and II in a conductor X at different
temperatures T I �= T II (figure 1). If the probes and wire are
of the same material, Z ≡ X, equation (4) can be integrated

as �μ̃e/e = ∫ T II

T I S dT −�ψ . Combining this result and
equation (6) we find the energy balance

�

(
κA

dT

dx

)
+ I

T II∫
T I

τdT + I�ψ = JQ, (8)

that allows us to evaluate the Thomson coefficient from the
observables dT I/dx , dT II/dx , �ψ = RI and JQ .

2.5. Couple X/Y

Consider a couple X/Y (figure 2) where an electric current I is
flowing. The temperature distribution evolves towards a steady
state with a maximum (or a minimum) at the junction. The
energy balance at the junction is expressed by (JU )X ≡ (JU )Y,
where the subscripts X and Y denote each of the two wires.
The equilibrium for the distribution of matter at the junction
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Figure 2. Peltier’s effect refers to the temperature profile along a
couple X/Y. At the steady state the junction temperature reaches a
maximum (or a minimum).

is expressed by (μ̃e)X = (μ̃e)Y. Then, from equation (1) we
deduce (πY − πX)I = A[κX(dTX/dx)− κY(dTY/dx)] and we
can evaluate the Peltier coefficient from measurement of the
two temperature gradients in the junction region. As far as
we know, the difference in Peltier coefficients has never been
measured using this equation.

The usual way of determining �π = πY − πX considers
the couple at a steady state while an electric current I is flowing
(figure 3). Let I and II be two sections at the same temperature
T = T I = T II. Then, as �(μ̃e/e) = −�ψ , equation (6) can
be written

�

(
κA

dT

dx

)
+ I�π + I�ψ = JQ . (9)

Therefore from the observables dT I/dx , dT II/dx , �ψ and JQ

we can calculate�π = πY −πX. This energy balance can also
be expressed in terms of the electric resistance

�

(
κA

dT

dx

)
+ I�π+ RI 2 + I

T II∫
T I

(SY − SX) dT = JQ, (10)

where R = RX + RY, RX = ∫ xIII

xI dx/σX AX and RY =∫ xII

xIII dx/σY AY.

3. Review of experimental work

In section 2 several expressions that relate the transport
coefficients with the observables �ψ and JQ have been
deduced. Some of them are well known and have been
successfully applied for evaluating transport coefficients, as in
thermal conductivity κ , thermoelectric power S and electric
conductivity σ [16, 17]. However we cannot say the same
when we refer to Peltier and Thomson coefficients. In the
literature we find work where other energy balances have been
applied. Then a critical review is needed.

3.1. Peltier’s coefficient

The direct measurements of the Peltier coefficient are usually
based on energy balances. This makes them difficult and
rare [18]. In fact, we find very few works with measurements
on this coefficient. Some of these papers use couples X/Y
and apply the energy balance under steady-state isothermal
conditions. Then, the Fourier term �[κA(dT/dx)] and the

Seebeck term I
∫ T II

T I (SY − SX) dT of equation (10) disappear.

Figure 3. To determine πY − πX the observables dT I/dx , dT II/dx ,
�ψ , and JQ need to be measured. Sections I and II have the same
temperature T I = T II.

Figure 4. Scheme of the device used by Caswell [1]. The couple
Cu/Bi has been introduced in a calorimeter. Cu: dark line; Bi: light
line. ⊗ stirrer.

But this temperature distribution does not seem to be possible
because at the junction dTX/dx �= dTY/dx due to πX �= πY

(see figure 2). This subject will be discussed in the following
review of several selected papers.

Caswell [1] introduced a couple Cu/Bi in a calorimeter
(figure 4) and assumed the energy balance typical of an
isothermal system (πBi − πCu)I + RI 2 = JQ , where the
Fourier and the Seebeck terms have not been considered.
Now we can estimate the weight of these terms for a very
smooth linear temperature profile with T III − T I = 0.1 K and
T I = T II (see figure 4). Thus we obtain �[κA(dT/dx)] =
−13 mW and I

∫ T II

T I (SBi − SCu) dT ≈ 5.7 μW. The Fourier
term is of the same order of magnitude as the Peltier term
(πBi − πCu)I = 17 mW and the Seebeck term is negligible.
Therefore we conclude that measurements of dT I/dx and
dT II/dx are needed to obtain accurate Peltier coefficients. In
these calculations the following data reported in this paper have
been used [1]: I = 1.037 A, ACu = 48 mm2, ABi = 36 mm2,
κCu = 400 W m−1 K−1, κBi = 7.97 W m−1 K−1, SBi − SCu =
54.8 μV K−1, πBi −πCu = 16 mV and x III − x I = x III − x II =
15 cm.

Rötzer et al [2] measured the Peltier coefficient at the
solid(S)–liquid(L) interface of highly doped p-type silicon.
Initially, an AC current is used. When the temperature was
uniform and constant, the current was changed to direct mode,
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Figure 5. Scheme of the thermopile [3]. Ni: dark line; Pt: light line.

maintaining the same Joule’s heating. Then the solid phase
was fused and the interface was moved. From the value of
this velocity they could evaluate the junction Peltier coefficient
πL − πS from the energy balance and equation (1). In order
to apply the initial conditions they worked in very short times,
less than 10 ms. The system had to remain in an isothermal
state to avoid Fourier terms. Although this kind of interface has
a limited interest, the work could be used in order to check the
ORR. But nothing can be said about this relationship because
the authors did not measure the Seebeck coefficient SL − SS.

Jiménez et al [3] designed a thermopile made of couples
Ni/Pt (figure 5) and considered the heat fluxes from the
thermopile in four spatial directions, J U

Q , J R
Q , J D

Q and J L
Q . If we

apply the energy balance to the four couples between sections
I and II in figure 5, since T I = T II, dT I/dx = dT II/dx
and π I

Ni = π II
Ni, we deduce from equation (9) that I�ψ =

J U
Q + J R

Q + J D
Q + J L

Q . That is, the measured values of the
heat fluxes can only provide information on the electric power
dissipation. However, these authors claimed to have found a
relation between the junction Peltier coefficient πPt − πNi and
the heat fluxes J L

Q and J R
Q .

Fukushima et al [4] evaluated the Peltier coefficient in a
couple Co/Au. They measured the apparent electric resistance
Rapp = �ψ/I and found that the Rapp ∝ I curve had a
parabolic shape. Then they assumed that, for a certain electric
current IP, the Peltier heat flux may be exactly balanced by the
Joule power R(IP)

2 + (πAu − πCo)IP = 0, as it occurs in an
isothermal system. But this kind of temperature distribution is
not possible and therefore the Fourier and Seebeck terms might
have a non-negligible weight. In the following we are going to
estimate these terms.

We assume a linear temperature profile as in figure 3.
First we calculate the value of �T = T III − T I for
every current. From �ψ = ∫ T II

T I (SAu − SCo) dT + I R we
deduce Rapp = (SAu − SCo)�T /I + R and therefore �T =
(Rapp − R0)I/(kCo/Au I + (SAu − SCo)), where R0 is the zero
current resistance. With the data reported in [4], Rapp in
figure 2(a), R0 = 3.6 	, R = R0 + kCo/Au�T , kCo/Au =
(1/2)(dR0/dT ) = 2.75 × 10−3 	 K−1 and SAu − SCo =
3.288 × 10−5 V K−1, we deduce the correlation �T ∝ I
shown in figure 6. These values are in agreement with the

Figure 6. An estimation of the values�T = T III − T I with respect
to the current I in a couple Co/Au. A scheme of the system is given
in figure 3. Data from Fukushima et al [4].

maximum decrement of temperature for the couple Co/Au,
which Fukushima et al [4] estimated at 4.6 K.

Finally we can evaluate the Fourier, Seebeck and Peltier
terms of the energy balance given by equation (10). For
I = 8.3 mA we obtain �[κA(dT/dx)] = 220 μW,

I
∫ T II

T I (SAu − SCo) dT = −2 μW and I (πAu − πCo) =
220 μW. We can see that the Fourier term has the same
order of magnitude as the Peltier term and therefore it cannot
be considered as a negligible quantity. In these calculations
we use the data reported by Fukushima et al [4], A =
70 × 200 nm2, �xAu = 220 nm, �xCo = 100 nm and
πAu − πCo = 27 mV. For the thermal conductivity the values
κAu = 310 W m−1 K−1 and κCo = 70 W m−1 K−1 have been
used.

3.2. Onsager reciprocal relation

The ORR in the thermoelectric phenomena implies that π =
T S. It is a consequence of the principle of microscopic
reversibility built into the framework of a general statistical
theory of irreversible processes. Although this relation is
generally accepted, we would like to emphasize that it is still
to be experimentally confirmed. The measurement of π and
S for a single material cannot be carried out, and we can only
measure πY−πX and SY−SX for a couple X/Y. Very few papers
reports measurements of the Peltier coefficient and, as we have
shown above, accurate measurements are difficult to obtain.
We expect that the theory developed in this paper may help
to provide sound values on the Peltier coefficient and, hence,
provide a better basis for the experimental confirmation of the
ORR.

3.3. Thomson’s coefficient

Very few authors have developed methods for measuring this
coefficient. The Fourier term also plays an important role in
the corresponding energy balance, as shown in equation (8).
Hoyem [5] and Ware [6] measured the Thomson coefficient in
a Zn crystal. The ends of this conductor were maintained at
temperatures T I and T II (see figure 1). Then they determined
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two electric currents Ip (positive) and In (negative) which
provide the same temperature at the middle of the system.
They assumed identical Fourier’s terms �[κA(dT/dx)]p =
�[κA(dT/dx)]n and identical heat fluxes (JQ)p = (JQ)n,

and evaluated the Thomson coefficient from Ip
∫ T II

T I τ dT +
R(Ip)

2 = In
∫ T II

T I τ dT + R(In)
2. But we have to be aware that

very small deviations δ in a temperature gradient generate very
large changes in the Thomson coefficient. In particular, using
the following data from [5], τ = 1.4 μV K−1, Ip = 1.0 A,
�T = 99 K, κ = 110 W m−1 K−1, A = 7.1 mm2 and
x II − x I = 15 cm, we can estimate that τ varies more than
a 50% due to a deviation δ = 0.03% in (dT I/dx)p.

In the method developed by Lander [7] the system was
intensively refrigerated at the two ends (T I ≈ 300 K)
and an electric current yielded a temperature distribution
with a maximum at the middle (440 K < T II <

2600 K) being dT II/dx = 0. He considered radiation and
convection losses to be negligible compared to the Fourier
term, JQ � κA(dT I/dx). He assumed for the energy

balance −κA(dT I/dx) + I
∫ T II

T I τ dT + I�ψ = 0. From the
measurements of T I, T II and dT I/dx the Thomson coefficient
was evaluated. For calculating �ψ a correlation ψ ∝ T was
deduced. Using the following data from [7], τ = 11 μV K−1,
I = 30 A, �T = 140 K, κ = 137 W m−1 K−1, A =
0.031 mm2 and x II − x I = 0.3 mm, we can estimate how much
the value in τ is modified due to a small deviation δ in dT I/dx .
For molybdenum, the Thomson coefficient varies more than
50% if δ = 1.1%. Therefore, precise measurements of the
temperature gradients are required to obtain accurate values
of τ .

4. Conclusions

(i) The thermoelectric processes have been studied in the
framework of the observable quantities. One of these is
the electric potential �ψ which is measured between the
terminals of probes Z connected to system X. The other
is the heat flux JQ which the system laterally dissipates
towards the surroundings.

(ii) A review of some selected papers which evaluate the
Peltier and Thomson coefficients has shown the important
weight of the Fourier term in the energy balance. For
obtaining accuracy results on these coefficients, very
precise measurements of the temperature gradients are
needed.

(iii) The evaluation of the Peltier coefficient πY − πX of the
couple X/Y from the measurements of the two temperature
gradients dTX/dx and dTY/dx at the junction has been
suggested.

(iv) The lack of confidence in the values of the Peltier
coefficient implies that the Onsager reciprocal relation still
needs to be experimentally confirmed, at least in a few
cases.
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